Евразийский химический рынок
Поиск
09.12.2021
08.12.2021
06.12.2021
02.12.2021
01.12.2021
Главная » Занимательная химия » Молибден в жаропрочных сплавах

Молибден в жаропрочных сплавах

Техника сверхскоростных и космических полетов ставит перед металлургами задачу получать все более жаростойкие материалы. Прочность при высоких температурах зависит прежде всего от типа кристаллической решетки и, конечно, от химической природы материала. Температурный предел эксплуатации титановых сплавов 550...600 C, молибденовых - 860, а титано-молибденовых - 1500 C!
Чем объяснить столь значительный скачок? Его причина - в строении кристаллической решетки. В объемно-центрированную структуру молибдена внедряются посторонние атомы, на этот раз атомы титана. Получается так называемый твердый раствор внедрения, структуру которого можно представить так. Атомы молибдена, металла-основы, располагаются по углам куба, а атомы добавленного металла, титана, - в центрах этих кубов. Вместо объемно-центрированной кристаллической решетки появляется гранецентрированная, в которой процессы разупрочения под действием температур происходят намного менее интенсивно. В таком целенаправленном изменении кристаллической структуры металлов состоит один из основных принципов легирования.
Другая причина столь резкого увеличения жаропрочности кроется в том, что сплавляются очень непохожие металлы - молибден и титан. Это общее правило: чем больше разница между атомами легирующего металла и металла-основы, тем прочнее образующиеся связи. Металлическая связь как бы дополняется химической.
Легирование, однако, вовсе не последнее слово в решении проблемы жаропрочных сплавов. Уже в наше время обнаружены необычайные свойства нитевидных кристаллов, или <усов>. Прочность их по сравнению с металлами, обычно используемыми в технике, поразительно велика. Объясняется это тем, что кристаллическая структура усов практически лишена дефектов, и техника сверхскоростных полетов берет на вооружение усы, создавая с их помощью композиционные жаропрочные материалы. Один из таких материалов - это окись алюминия, армированная молибденовыми усами, другой представляет собой начиненный той же арматурой технический титан. По сравнению с обычным титаном этот материал может работать в жестких условиях в 1000 раз дольше.
Что можно противопоставить огненному смерчу, обрушивающемуся на космический корабль при входе в плотные слои атмосферы? Прежде всего теплозащитную обмазку и охлаждение. Да, охлаждение, подобное в принципе охлаждению автомобильных двигателей с помощью радиаторов. Только работать здесь должны более энергоемкие процессы. Много тепла нужно на испарение веществ, но еще больше на сублимацию - перевод из твердого состояния непосредственно в газообразное. При высоких температурах сублимировать способны молибден, вольфрам, золото. Покрытие носовой части корабля молибденом или другим из перечисленных (более дорогих) металлов в значительной мере ослабит силу огненного смерча, через который надо пройти возвращаемому аппарату космического корабля.
Наши партнёры
ТПК «ИНФРАХИМ» CREON Group
Конференции и выставки, проводимые при информационной поддержке журнала «Евразийский химический рынок»
«Нефтехимия России: рынки, цены, прогнозы» Применение международных регламентов регулирования безопасности химической продукции Водород Россия и СНГ Грэйнтек 2021 Putech Eurasia & Eurasian Composites Show 2021 БИОТ 2021 Полимеры России и СНГ: строительство и модернизация заводов Интерпластика 2022